Manufactured Nanomaterials & Risk Governance

Igor Linkov and Ben Trump US Army Corps of Engineers 6172339869

March 2017

Risk management and decision making for complex systems: what are our options?

Benjamin Trump and Igor Linkov US Army Corps of Engineers October 2018

Developers inform the state of science.

Science *is not* implemented and reviewed in a vacuum.

Disruptive Innovation

- "Playing the Game Differently"
- Creates a New Market
- Transforms or Destroys Current Market
- Products Become
 - ▶ Simpler
 - ► More Affordable
 - ► More Accessible
 - ▶ Customizable
- Drives Growth

Old

vs. New

The Challenges of Emerging Technology Innovation

- Pace of invention and innovation is growing
 - ► Likewise, getting further refined and specified
 - ► Revolutionary potential to benefit health pressures to innovate
- For public health, also breaching existing scientific knowledge
 - Nanotechnology, synthetic biology/systems engineering, many others
- Existing governance structures are not designed to deal with fast-paced innovation of this magnitude
 - ► Made for deliberative and thorough testing process
 - ▶ Behave differently than conventional technologies, defy existing knowledge of hazard and exposure assessment

Kuzma, J., & Tanji, T. (2010). Unpackaging synthetic biology: Identification of oversight policy problems and options. Regulation & Governance, 4(1), 92-112.

"The Pacing Problem" of Governance

No matter how sophisticated risk assessment becomes, a gap will always exist between new material introduction and risk characterization & management.

Adaptive Governance:

Iterative improvements to governance of materials or activities as more information becomes available

Further Complications – Decision Making & Regulation Under Uncertainty?

- What do we do when we don't know much?
 - ▶ Closed experimentation
 - ► Ask the experts
 - ► Modeling exercises best/worst case scenarios?
- Work within the confines of your governance regime
 - Not always open and welcoming of innovation under uncertainty

Drivers of Governance

Methods & Tools for RG

- Cost-Benefit Analysis
- Hazard/Exposure Assessment
- Life-Cycle Assessment
- Adaptive Management
- Control Banding
- Decision Analysis

Risk Governance

Literature Synthesis Results (n=429)

Tools are helpful, but not necessarily

"Good" Governance

Style of Governance

Primarily Single Material

Single Material

Primarily Comparative Solely Comparative

- Quantitative Methods and tools help drive traditional risk assessment
- However, such quantitative guidance on hazard, exposure, and effects is not always available
- Also need to consider non-risk considerations of cost, societal benefit, ethics, implications, etc.
 - Consider <u>all elements</u> of risk governance to drive "good" governance

There are a lot of tools out there. What options are relevant for state/local decision makers?

- State and city governments have a tremendous amount of power to determine how goods and materials are:
 - ▶ acquired,
 - ▶ produced,
 - ▶ used,
 - ► consumed, and
 - ▶ disposed of within their boundaries
- Some are binding, others non-binding.

Typical mechanisms used by states and localities

- Blue-ribbon commissions
 - ► (e.g., Policy Options for Regulating Marijuana in California)
- Multi-Stakeholder Consortia
 - ► (e.g., NANOCAP and the 'no data, no market' rule)
- Public-Private Partnerships
 - ► (e.g., state-utility partnership in Massachusetts to operate in high-risk, high-volume areas of utility management and road paving)
- Direct research funding
 - ► Academic centers of excellence which view state-based risk assessment and management concerns (e.g., 'Risk Science Centers')
- Federal-State Partnerships
 - ► Congressional add-ins which formally join government agencies, companies, and universities with shared funding for a risk research problem

The Impact that States Can Have

- Must meet federal minimum requirements, but can be more stringent
- Material production and safety (ventilation, capture)
- Occupational health and safety requirements
- Safe transport and transshipment
 - ► Import and export of nanomaterials
- Consumer product safety
- Disposal and treatment requirements
- Insurance and Risk Transfer requirements!

Risk Assm.-Governance Integration

Top-Down

Decision Analysis/Social Science

Goal Identification and Problem Framing

What are the goals, alternatives, and constraints?

Decision Model

What are the criteria and metrics, How do we measure decision-maker values

Metrics Generation and Alternative Scoring

How does each alternative score along our identified criteria and metrics?

Management

Modeling

Data Collection

Bottom-Up

Risk Assessment/ Physical Sci

Risk Characterization

What are the risks relative to a threshold? How do they compare to other alternatives?

Physical/Statistical Model

What is the hazard? What is exposure?

Data Collection

What are fundamental properties/mechanisms associated with each alternative?

